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Critical behaviour of a surface reaction model with infinitely
many absorbing states
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Received 2 December 1993

Abstract, In a recent letter, Yaldram ef af studied the critical behaviour of a simple lattice gas
model of the CO-NO catalytic reaction. The model exhibits a second-order non-equilibrium
phase transition from an active state into one out of infinitely many absorbing states. Estimates
for the critical exponent 8 suggested that the model belongs to a new universality class. The
results reported in this article contradict this notion, as estimates for various critical exponents
show that the madel belongs to the universality class of directed percolation.

Non-equilibrivm phase transitions occur in many models studied in physics, chemistry,
biclogy or even sociclogy. A special group of models, that have attracted a great deal of
interest in recent years, exhibit a continuous iransition into an absorbing state. The best
known examples are probably directed percolation (DP} [1-4], Reggeon field theory [5, 6],
the contact process [7--9], and Schlogl’s first and second models [10-13]. Extensive studies
of these and many other models [14-22] with a unigue absorbing state have revealed that
they belong to the same universality c¢lass, This provides firm support for the conjecture
that continuous transitions into a unique absorbing state-generically belong to the DP class
i12,13].

For models with multiple absorbing states the situation is not so simpie. Some studies
of two-dimensional surface reaction models yield critical exponents different from those of
directed percolation in {2+ 1)-dimensions [23,24]. However, the pair contact process (PCP)
and dimer reaction (DR) model (in one dimension) clearly belongs to the DP universality class
[25,26], at least as far as the static critical behaviour is concerned. In all of these models
the number of absorbing configurations grows exponentially with system size. However,
all of the absorbing conﬁgurations are characterized by the vanishing of a unique guantity,
&.g., the number of particle pairs in the PCP or in other cases the {23, 24] number of nearest
neighbour vacancy pairs.

Recently, Yaldram er al [27], studied the critical behaviour of a simple lattice model
of the CO-NO catalytic reaction in which CO + NO — CO, + INZ Schematically the
reaction steps are given as:

CO? 4 % —» CO*? (1)
NOS +2% - O +N¢ )
CO® +0° > COS +24 3)
N7+ N* — N§ +2 % : )
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where the superscripts g(«a) refers to a molecule in the gas phase (adserbed on the surface)
and + marks an empty site. The catalytic surface is modelled by a two-dimensional triangular
lattice. The rules of the computer algorithm are quite simple, with probability p a CO
molecule is adsorbed on an empty site and with probability 1—p NO adsorption is attempted.
Since NO dissociates upon adsorption it requires.a nearest neighbour pair of empty sites. In
the simulations this is done by first choosing an empty site at random and then choosing one
of the six nearest neighbours randomly, if the neighbour is empty O is placed on the original
site and N on its neighbour. After each adsorption the nearest neighbours are checked (in
random order) and CO+O reacts to form CO; which leaves the surface at once, likewise N+N
forms N, which desorbs immediately. It is thus obvious that any state without empty sites
is absorbing. All processes depend on the presence of empty sites so an efficient algorithm
uses a list of these. After each attempted adsorption the time variable is incremented by
1/N,, where N, is the number of empty sites prior to the attempt, thus making each time
step equal to (on average) one atterapted update per lattice site. The algorithm outlined
above differs from that used by Yaldram ef af in one aspect, when NO adsorbs they choose
a pair of empty sites at random, whereas I choose one empty site and a nearest neighbour
and only adsorb NOQ if the nearest neighbour is empty. This makes NO adsorption less likely
in my algorithm. However, one would expect this merely to lead to a change in the location
of the phase transitions rot to a change in the critical behaviour. Computer simulations by
Yaldram et al [27] show that when p < p; the system always enters an absorbing state in
which the lattice is covered by a mixture of O and N (but of course without any nearest
neighbour pairs of N). Note that the symmetry of the lattice prevents a CO from being
surrounded by N, as some of these N would have to be nearest neighbours and thus react.
The number of absorbing configurations grows exponentially with system size. Note also
that an absorbing configuration, though not unique, is characterized by the vanishing of
the number of empty sites. At py the model exhibits a continuous phase transition into an
active state in which the catalytic process can proceed indefinitely. Finally when p exceeds
a second critical value p, the model exhibits a discontinuous phase transition into a CO
and N covered state. The phase diagram of the CO-NO reaction model is thus very similar
to that found in various similar catalytic models [14, 23, 24]. Near the critical point p; one
would expect the concentrations px of various lattice sites X (X = O, N, CO, or an empty
site) to follow simple power laws,

sat

px — P o (p — p1)P* ()

where p%" is the saturation concentration. Note that the saturation concentration for empty
sites and CO is zero, whereas it is non-zero for O and N. Yaldram ef gl [27] found that
p1 = 0.185(2), where the figure in parenthesis is the uncertainty in the last digit, and
Bx = 0.20-0.22. The estimates for Sy are much smaller than the value 8 = 0.592(10),
obtained using the scaling relation 8 = vy [11] with § = 0.460(6) and vy = 1.286(5)
[28], for directed percolation in (2 - 1)-dimensions. This could indicate that the CO-NO
model belongs to a new universality class. However, the uncertainty in the estimate for
p1 is quite large, especially considering that the £ estimates are obtained. using values of
P — p1 between (.01 and 0.001, which overlaps the error estimate for p;. Moreover, the
lattice sizes (40 x 40) used in the simulations are very small. Actually for such small lattice
sizes one would expect finite-size effects to be quite prominent. All in all I think there is
ample reason to doubt the validity of the exponent estimates obtained by Yaldram et al,

In this article I report the results of extensive simulations of the CO-NO model using
time-dependent simulations and finite-size scaling. The general idea of time-dependent
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simulations is to start from a configuration which is very close to the absorbing state,
and then follow the ‘average’ time evolution of this configuration by simulating a large
ensemble of independent realizations. This method is straightforward and very successful
for models with a unique absorbing state [11,15,18,19,28]. For maodels with multiple
absorbing state the sitnation is more intricate, as a recent study [26] revealed that the
dynamic critical exponents predicted via time-dependent simulations depend upon the choice
of initial configuration. However, two important facts emerged from this stidy, first of all
the predictions for the location of the critical point was always correct, and secondly if one
uses an initial configuration reminiscent of a #ypical absorbing configuration the predictions
for the dynamical critical exponents coincide with those expected from the static critical
behaviour. A recent more thorough study by Mendes e al [29] have confirmed this picture
and led to a generalized scaling ansatz for models with multiple absorbing states. In this
study I generate the initial configuration by simulating the CO-NO model on a 128 x 128
lattice (with periodic boundary conditions) at the value of p under investigation until it enters
an absorbing state. An off-set (x, y) is then chosen randomly on this lattice. Hereafter the
configuration is mapped cyclically onto a larger (512 x 512) lattice such that (x, y) is at
the origin of the larger lattice. The particle at position (i, j) on the large lattice is the same
as the particle at position (f + x mod 128, j + y mod 128) on the small lattice. Hereafter
a pair of empty sites is placed at the origin. The size of the large lattice ensures that the
cluster of empty sites grown from the seed at the origin never reaches the boundaries of
the lattice. We thus start in a configuration close to an absorbing state (just two sites are
open) and it should be close to a typical absorbing state of the infinite system. For each
such configuration I simulated 5000 independent samples and typically 50-100 irdependent
configurations for a total of 250500000 samples. Each run had a maximal duration of 2000
titne steps, but most samples-enter an absorbing state before this limit is reached. As usual
in this type of simulation I measured the survival probability P(7), the average number
of empty sites 7}, and the average mean square distance of spreading RZ(z)} from the
origin. Notice that /() is averaged over all runs whereas R%(?) is averaged only over the
surviving runs. In accordance with the scaling ansatz for models with a unique absorbing
state [11, 28] it follows that these quantities have the following scaling form,

P(t) e 8@ art/m 6
A(2) oc I (A , )
R (1) o« 2@ (A1) (8

where A = |p— pi| is the distance from the critical point, and v is the time-like correlation
length exponent. If the scaling functions @, ¥, and ® are non-singular at the origin it
follows that P(z), i(¢), and R2(f) behave as power-laws at p; with critical exponents —3§,
n, and z, respectively, for ¢ = oo. Generally one has to expect corrections to a pure power
law behaviour so that, e.g., P{#)} is more accurately given by [28]

POt +ar b7 +..) ‘ (9)
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and similarly for n(¢) and z(z). In a plot of the local slopes versus 1/t the critical exponents
are given by the intercept of the curve for p; with the y-axis. The off-critical curves often
have very notable curvatuse, i.e., one will see the curves for p < py veering downward while
the curves for p > p; veer upward. This enables one to obtain accurate estimates for py
and the critical exponents. In figure 1 I have plotted the local stopes for various values of p.
From the plot of n(t) it is clear that the two lower curves, corresponding to p = 0.1781, and
0.1782, veers downward showing that p; > 0.1782. Likewise the upper curve, p = 0.1785,
has a pronounced upwards curvature. Though it is less evident it also seems that the curve
for p = 0.1784 veers upwards. All in all I conclude that p; = 0.1783(1). This estimate
differs quite a bit from that of Yaldram et a! (p; = 0.185(2)), which is probably due to
the slightly different algorithms. Note that since NO adsorption is less efficient in my
algorithm one would expect my estimate for p; to be smaller, as is also observed in the
simulations. From the intercept of the critical curves with the y-axis I estimate § = 0.45(1),
n = 0.220(5) and z = 1.12(1). These values agree very well with those obtained from
computer simulations of directed percolation in (2 + 1)-dimensions [28], § = 0.460(6),
n = 0.214(8) and z = 1.134(4).
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(middle panel), and z(#} (lower panel), as defined in

SIS

0.940 000 Y (10) with m = 5. Each panel contains five curves with,
; ) from bettom to top, p =0.1781, 0.1782, 0.1783, 0.1784
1/t and 0.1785.

From these results it seems reasonable to conclude that the CO-NO model belongs to
the DP universality class. However, due to the somewhat arbitrary choice of the initial
configuration employed in the time-dependent simulations it would be nice to validate this
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conclusion through other means. To this end I have also performed extensive steady-
state simulations using a finite-size scaling analysis. Finite-size scaling, though originally
developed for equilibrium systems, is also applicable to non‘equilibrium second-order phase
transitions as demonstrated by Aukrust ef al [17]. Their method was later applied to
models with infinitely many absorbing states [23, 26]. As in equilibrium second-order phase
transitions one assumes that the (infinite-size) non-equilibrium system features a length scale
which diverges at criticality as, £(p) oc A™"+, where v is the correlation length exponent in
the space direction. The basic finite-size scaling ansatz is that the various quantities depend
on system-sized only through the scaled length L /&, or equivalently through the variable
ALYV, where L is the linear extension of the system. Thus we assume that the density of
empty sites (which will be used as the order parameter of the model) depends on system
size and distance from the critical point as:

ps(p, L) o L=PIVL F(ALVY) (an
such that at p,
ps(p1, L) oc L7810, (12)

In p,, and other quantities, the subscript s indicates an average taken over the surviving
samples. Figure 2 shows a plot of the average concentration of particles log,(g;(p1, L)]
as a function of log, L at the critical point, p; = 0.1783. All simulations were performed
on lattices of size L x L using periodic boundary conditions. The maximal number of
timesteps in each trial, #pr, and number independent samples, N, varied ﬁon-_l tyy = 300,
Ng = 50000 for L = 8 to #y = 125000, Ny = 500 for L = 256. The slope of the line
drawn in the figure is 8/v, = (.81, which comes from the DP estimate S/v; = 0.81(2),
using the earlier cited estimate for g-and v, = 0.729() [28]. The data falls very nicely
on the line drawn using the DP estimate thus confirming that the model belongs to the Dp
universality class.
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Figure 2, The concentration of empty sites loga[o:(p1, L}] versus log, L. The slope of the
straight line is 8/v) = 0.81.

Near the critical point the order pardmeter fluctuations grow like a power law, x; =
LA(p% — (p)?) o AY, from which we expect the following finite-size scaling form,

Xs(p, LY o« LY G(ALYML) (13)
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s=u0h that at py
xs(p1. L) e LY/, (14)

Figure 3 shows a plot of log,[xs(p1, L)] versus log, L. The slope of the straight line
is 0.39 as obtained from the DP value y/v; = 0.39(2), where I used that y = y*F —y =
0.285(11) with ¥P° = 1.571(6) [28]. The excellent agreement between the data and the
Dr-expectation confirms the DP critical behaviour of this model.
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Figure 3. The fluctuations in the concentralior_l of empty sites logy[x:(p1, L)) versus log, L.
The slope of the straight line is » /vy = (0.39.

Ope expects a characteristic time for the system, say the relaxation time, to scale like
z(p, L) oc L™V (ALY (15)
such that at p;
t(p1, L) o L™/, (16)

In figure 4 T have plotted log,[z,(p1, L)), where 7, is the time it takes for half the
samples to enter an absorbing state, as a function of log, L. The slope of the line drawn in
the figure is vy /vy = 1.764, as obtained from the DP estimate [28] vy /v. = 1.764(7). The
DP estimate is derived from the scaling relation v /v, = 2/z using the earlier cited estimate
for z. As can be seen the data for the CO-NO model is again fully compatible with DP
critical behaviour.

One may also study the dynamical behaviour by looking at the time dependence of
ps{p1, L,2). Fort>> 1 and L >3 1 one can assume a scaling form

ps(p1, L, 1) o« L7PPug g/ Lo/ony, amn

At p; the system shows a power law behaviour for ¢ < L*/** before finite-size effects
become important. Thus for L 3> 1 and £ < L%, o(py, L,t) « £~%. From (17) we see
that this is the case for large L only if € = B/v. It can be shown [11] that this ratio also
e'qua]s the critical exponent 5. Figure 5 shows the short-time evolution of the concentration
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Figure 4. The time before half the samples enter Figure 5. Log-log plot of pi(p, L, 1), for p=p1 =
an absorbing state logyfta{py, L)] versus log, L. The  0.1783 and L = 236, as a function of ¢t. The slope of
slope of the straight line is vy/v) = 1.764. the straight line is & = 0.45.

of empty sites at py with L == 256, #py = 10000, and Nz = 1000. The asymptotic behaviour
is consistent with 8 = 0.45, as seen from the slope of the line. This estimate agrees well
with the value for directed percolation & = § = 0.460(6), or the estimate § = 0.45(1)
obtained from the time-dependent simulations presented above.

In conclusion, we have provided very convincing evidence that the critical exponents
of the two dimensional CO-NO model are the same as those of directed percolation in
(2 + )-dimensions. This is the first time that a two dimensional multi-component model]
with infinitely many absorbing states has been firmly placed in the DP universality class.
This result lends further support to the extensions of the DP conjecture to models with
multiple components [30] and/or infinitely many absorbing states [25,26], at least in cases
where the absorbing states can be characterized by the vanishing of a unique quantity.
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