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LETTER TO THE EDITOR 

Critical behaviour of a surface reaction model with inhitely 
many absorbing states 

Iwan Jensent 
Department of Mathematics, The University of Melbourne, Parkville. Victoria 3052, Australia 

Received 2 December 1993 

Abstract. In a Kent  letter, Yaldram et a1 studied~the nitical behaviour of a simple latrice gas 
model of the CO-NO catalytic reaction. The model exhibits a second-order non-eqnilibrium 
phase transition h m  an active state into one out of infinitely many absorbing states. Estimates 
for the critical exponent B suggested that the model belongs to a new universality class. The 
results reported in this article contradict this notion, as estimates for various critical exponents 
show that the model belongs to the universality class of directed percolation. 

Non-equilibrium phase transitions occur in many 'models studied in physics, chemistry, 
biology or even sociology. A special group of models, that have attracted a great deal of 
interest in recent years, exhibit a continuous transition into an absorbing state. 'The best 
known examples are probably directed percolation (DP) [ld,], Reggeon field theory [5 ,6] ,  
the contact process [7-91, and Schlogl's first and second models [10-13]. Extensive studies 
of these and many other models [14-221 with a unique absorbing state have revealed that 
they belong to the same universality class. This provides firm support for the conjecture 
that continuous transitions into a unique absorbing state-generically belong to the DP class 
[U,  131. 

For models with multiple absorbing states the situation is not so simple. Some studies 
of two-dimensional surface reaction models yield critical exponents different from those of 
directed percolation in (2+ 1)-dimensions [23,24]. However, the pair contact process (PCP) 
and dimer reaction (DR) model (in one dimension) clearly belongs to the DP universality class 
[25,26], at least as far as the stntic critical behaviour is concemed. In all of these models 
the number of absorbing configurations grows exponentially with system size. However, 
all of the absorbing configurations are characterized by the vanishing of a unique quantity, 
e.g., the number of particle pairs in the PCP or in other cases the [23,24] number of nearest 
neighbour vacancy pairs. 

Recently, Yaldram et al [27], studied the critical behaviour of a simple lattice model 
of the CO-NO catalytic reaction in which CO + NO + CO2 + ~ N z .  Schematically the 
reaction steps are given as: 

c o s  + * + coo (1) 

NOs+2*+O'+Na ~ ~ (2)  

C@ +@ + CO; + 2 *  (3) 

Na+Na -+ N: + 2 *  (4) 
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where the superscripts g@) refers to a molecule in the gas phase (adsorbed on the surface) 
and * marks an empty site. The catalytic surface is modelled by a two-dimensional triangular 
lattice. The rules of the computer algorithm are quite simple, with probability p a CO 
molecule is adsorbed on an empty site and with probability 1-p NO adsorption is attempted. 
Since NO dissociates upon adsorption'it requires~a nearest neighbour pair of empty sites. In 
the simulations this is done by first choosing an empty site at random and then choosing one 
of the six nearest neighbours randomly, if the neighbour is empty 0 is placed on the original 
site and N on its neighbour. After each adsorption the nearest neighbours are checked (in 
random order) and CO+O reacts to form CO2 which leaves the surface at once, likewise N t N  
forms Nz which desorbs immediately. It is thus obvious that any state without empty sites 
is absorbing. All processes depend on the presence of empty sites so an efficient algorithm 
uses a list of these. After each attempted adsorption the time variable is incremented by 
I / N c ,  where Ne is the number of empty sites prior to the attempt, thus making each time 
step equal to (on average) one attempted update per lattice site. The algorithm outlined 
above differs from that used by Yaldram et a1 in one aspect, when NO adsorbs they choose 
a pair of empty sites at random, whereas I choose one empty site and a nearest neighbour 
and only adsorb NO if the nearest neighbour is empty. This makes NO adsorption less Iikely 
in my algorithm. However, one would expect this merely to lead to a change in the location 
of the phase transitions not to a change in the critical behaviour. Computer simulations by 
Yaldram etal I271 show that when p. c PI the system always enters an absorbing state in 
which the lattice is covered by a mixture of 0 and N @ut of course without any nearest 
neighbour pairs of N). Note that the symmetry of the lattice prevents a CO from being 
surrounded by N, as some of these N would have to be nearest neighbours and thus react. 
The number' of absorbing configurations grows exponentially with system size. Note also 
that an absorbing configuration, though not unique, is characterized by the vanishing of 
the number of empty sites. At PI the model exhibits a continuous phase transition into an 
active state in which the catalytic process can proceed indefinitely. Finally when p exceeds 
a second critical value p2 the model exhibits a discontinuous phase transition into a CO 
and N covered state. The phase diagram of the CO-NO reaction model is thus very similar 
to that found in various similar catalytic models [14,23,24]. Near the critical point PI one 
would expect the concentrations px of various lattice sites X (X = 0, N, CO, or an empty 
site) to follow simple power laws, 

where p t '  is the saturation concentration. Note that the saturation concentration for empty 
sites and CO is zero, whereas it is non-zero for 0 and N. Yaldram et a1 [27] found that 
P I  = 0.185(2), where the figure in parenthesis is the uncertainty in the last digit, and 
fix t 0.20-0.22. The estimates for & are much smaller than the value ,3 = 0.592(10), 
obtained using the scaling relation B = S q  1111 with 6 = 0.460(6) and ufl = 1.286(5) 
17-81, for directed percolation in (2  + 1)-dimensions. This could indicate ,that the CO-NO 
model belongs to a new universality class. However, the uncertainty in the estimate for 
PI is quite large, especially considering that the B estimates are obtained. using values of 
p - p ,  between 0.01 and 0,001, which overlaps the error estimate for PI. Moreover, the 
lattice sizes (40 x 40) used in the simulations are very small. Actually for such small lattice 
sizes one would expect finitesize effects to be quite prominent. All in all I think there is 
ample reason to doubt the validity of the exponent estimates obtained by Yaldram et al. 

In this article I report the results of extensive simulations of the CO-NO model using 
time-dependent simulations and finite-size scaling. The general idea of time-dependent 
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simulations is to start from a configuration which is very close to the absorbing state, 
and then follow the ‘average’ time evolution of this configuration by simulating a large 
ensemble of independent realizations. This method is straightforward and very successful 
for models with a unique absorbing state [ l l ,  15,18, 19,281. For models with multiple 
absorbing state the situation is more intricate, as .?‘recent study [26] revealed that the 
dynamic critical exponents predicted via time-dependent simulations depend upon the choice 
of initial configuration. However, two important facts emerged from this sthdy, first of all 
the predictions for the location of the criticalpoint was.always correct, and secondly if one 
uses an initial configuration reminiscent of a typical absorbing configuration the predictions 
for the dynamical critical exponents coincide with those expected from the static critical 
behaviour. A recent more thorough study by Mendes et a1 1291 have confirmed this picture 
and led to a generalized scaling ansatz for models with multiple absorbing states. In this 
study I generate the initial configuration by simulating the CO-NO model on a 128 x 128 
lattice (with periodic boundary conditions) at the value of p under investigation until it enters 
an absorbing state. An off-set ( x ,  y) is then chosen randomly on this lattice. Hereafter the 
configuration is mapped cyclically onto a larger (512 x 512) lattice such that ( x ,  y )  is at 
the origin of the larger lattice. The particle at position (i. j )  on the large lattice is the same 
as the particle at position ( i  + x mod 128, j + y mod 128) on the small lattice. Hereafter 
a pair of empty sites is placed at the origin. The size of the large lattice ensures that the 
cluster of empty sites grown from the seed at the origin never reaches the boundaries of 
the lattice. We thus star t  in a configuration close to an absorbing state (just two sites are 
open) and it should be close to a typical absorbing state of the infinite system. For each 
such configuration I simulated 5000 independent samples and typically 50-100 independent 
configurations for a total of 250-500000 samples. Each run had a maximal duration of 2000 
time steps, but most samplesenter an absorbing state before this limit is reached. As usual 
in this type of simulation I measured the survival probability P ( i ) ,  the average number 
of empty sites E@), and the average mean square distance of spreading $(t) from the 
origin. Notice that E@) is averaged over all runs whereas R2(t) is averaged only over the 
surviving runs. In accordance with the scaling ansatz for models with a unique absorbing 
state [ll, 281 it follows that these quantities have the following scaling form, 
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where A = / p  -PI I is the distance from the critical point, and V I ,  is the time-like correlation 
length exponent. If the scaling functions Q, ‘4, and 0 are non-singular at the origin it 
follows that P ( t ) ,  E@), and R2(t)  behave as power-laws at p ,  with critical exponents -6, 
0. and z ,  respectively, for t + 03. Generally one has to expect corrections to a pure power 
law behaviour so that, e.g., P ( t )  is more accurately given by [28] 

P(t )  a t -q l+nt - ’+bt -6’+  ...) (9) 
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and similarly for a@)  and z( t ) .  In aplot of the local slopes versus l/t the critical exponents 
are given by the intercept of the curve for p1 with the y-axis. The off-critical curves often 
have very notable curvature, i.e., one will see the curves for p c pl  veering downward while 
the curves for p > p1 veer upward. This enables one to obtain accurate estimates for pl 
and the critical exponents. In figure 1 I have plotted the local slopes for various values of p .  
From the plot of q( t )  it is clear that the two lower curves, corresponding to p = 0.1781. and 
0.1782, veers downward showing that p1 z 0.1782. Likewise the upper curve, p = 0.1785, 
has a pronounced upwards curvature. Though it is less evident it also seems that the curve 
for p = 0.1784 veers upwards. All in all I conclude that PI = 0.1783(1). This estimate 
differs quite a bit from that of Yaldram et al (p1 = 0.185(2)), which is probably due to 
the slightly different algorithms. Note that since NO adsorption is less efficient in my 
algorithm one would expect my estimate for p1 to be smaller, as is also observed in the 
simulations. From the intercept of the critical curves with the y-axis I estimate S = 0.45(1), 

= O.ZZO(5) and z = 1.12(1). These values agree very well with those obtained from 
computer simulations of directed percolation in (2 + 1)-dimensions 1281, S = 0.460(6), 
q = 0.214(8) and z = 1.134(4). 
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Figure 1. L a d  slopes -a(:) (upper panel), )I(:) 
(middle panel), and z(t) (lower panel). as defined in 
(10) with m = 5. Each panel contains five awes with, 
from bouomto top, p = 0.1781,0.1782,0.1783. 0.1784 
and 0.1785. 

From these results it seems reasonable to conclude that the CO-NO model belongs to 
the DP universality class. However, due to the somewhat arbitrary choice of the initial 
configuration employed in the time-dependent simulations it would be nice to validate this 
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conclusion through other means. To this end I have aIso performed extensive steady- 
state simulations using a finite-size scaling analysis. Finitesize scaling, though originally 
developed for equilibrium systems, is also applicable to non'equilibrium second-order phase 
transitions as demonstrated by Auhust et al [171. Their method was later applied to 
models with infinitely many absorbing states 125,261. As in equilibrium second-order phase 
transitions one assumes that the (infinitesize) non-equilibrium system feabxes a length scale 
which diverges at criticality as, f ( p )  a A-"L, where UL is the correlation length exponent in 
the space direction. The basic finite-size scaling ansatz is that the various quantities depend 
on system-sized only through the scaled length L / e ,  or equivalently through the variable 
AL'/"I, where L is the linear extension of the system. Thus we assume that the density of 
empty sites (which will be used as the order parameter of the model) depends on system 
size and distance from the critical point as: 

p.%(p. L )  C( L - ~ I ~ ~ F ( A L ~ I ~ ~ )  (11) 

p&,. L )  o( L-o/"l. (12) 

such that at p1 

In p,?, and other quantities, the subscript s indicates an average taken over the surviving 
samples. Figure 2 shows a plot of the average concentration of particles log,[ps(p~, L ) ]  
as a function of log, L at the critical point,pl = 0.1783. All simulations were performed 
on lattices of size L x L using periodic boundary conditions. The maximal number of 
timesteps in each trial, t ~ ,  and number independent samples, Ns, varied from t M  = 300, 
Ns = 5OOOO for L = 8 to t M  = 125oa0, Ns = 500 for L = 256. The slope of the line 
drawn in the figure is @ / u l  = 0.81, which comes from the DP estimate @/ul = 0.81(2), 
using the earlier cited estimate for @.and ul = 0.729(8) [28]. The data falls very nicely 
on the line drawn using the DP estimate thus confirming that the model belongs to the DP 
universality class. 

Figure 2. The concentration of empty sites log&s(pi. L)] vexsus log1 L .  The slope of the 
straight line is BIUL = 0.81. 

Near the critical point the order p a r ~ e t e r  fluctuations grow like a power law, ,ys =. 

,ys(p. L) 0: Ly~"LG(AL""L) (13) 

Ld((pZ) - (p),) o( AY, from which we expect the following finite-size scaling form, 
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such that at p1 

XdPl. L )  o( LYIQ. (14) 

Figure 3 shows a plot of logz[xs(pl, L)] versus logzL. The slope of the straight l i e  
is 0.39 as obtained from the DP  value^ y / v s  = 0.39(2), where I used that y = yDP - W I I  = 
0.285(11) with y” = 1.571(6) [28]. The excellent agreement between the data and the 
DP-expectation confirms the DP critical behaviour of this model. 

Figure 3. The fluctuations in the concentration of empty sites log,Lx&t, L)] versus log, L. 
The dope of the skaight line is y / v r  = 0.39. 

One expects a characteristic time for the system, say the relaxation time, to scale like 

r (p ,  L)  O( L - ~ ~ I ~ T ( A L ~ I ~ ~ )  (15) 

such that at p~ 

T(p1, L )  o( L-”’IVL. (16) 

In figure 4 I have plotted 10gz[7hh@~, L)], where ?h is the time it takes for half the 
samples to enter an absorbing state, as a function of logz L.  The slope of the line drawn in 
the figure is y / v ~  = 1.764, as obtained from the DP estimate [28] q / w ~  = 1.764(7). The 
DP estimate is derived from the scaling relation IJI/UL = 2/z using the earlier cited estimate 
for z .  As can be seen the data for the CO-NO model is again fully compatible with DP 
critical behaviour. 

One may also study the dynamical behaviour by looking at the time dependence of 
p,&j, L ,  t ) .  For t >> 1 and L >> 1 one can assume a scaling form 

p.y(pl, L ,  t )  a L-fl’u~$l(t/Ly’”~). (17) 

At p1 the system shows a power law behaviour for t < L*I”L before finitesize effects 
become important. Thus for L > 1 and t < L”j/yI, p(p1, L ,  t )  o( tre. From (17) we see 
that this is the case for large L only if 0 = p / q .  It can be shown [ll] that this ratio also 
equals the critical exponent 6. Figure 5 shows the short-time evolution of the concentration 
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Figure 4. The rime before Mf the samples enter Figure 5. Log-log plot of p,(p, L , r ) ,  for p = p, = 
an absorbing state lo&[q,(p~, L)lversus log, L. The ~0.1783 and L = 256, as a functLon of t .  The slope of 
slope of the straight line is q / v L  = 1.7%. the straight line is 0 = 0.45. 

of empty sites at p1 with L = 256, t~ = 10000, and NS = 1000. The asymptotic behaviour 
is consistent with 8 = 0.45, as seen from the slope of the line. This estimate agrees well 
with the value for directed percolation 8 = 8 = 0.460(6), or the estimate 6 = 0.45(1) 
obtained from the time-dependent simulations presented above. 

In conclusion, we have provided very convincing evidence that the critical exponents 
of the two dimensional CO-NO model are the same as those of directed percolation in 
(2 + 1)-dimensions. This is the first time that a two dimensional multi-component model 
with infinitely many absorbing states has been firmly placed in the DP universality class. 
This result lends further support to the extensions of the DP conjecture to models with 
multiple components [30] andor infinitely many absorbing states [25,26], at least in cases 
where the absorbing states can be characterized by the vanishing of a unique quantity. 
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